Transcriptional Regulation of Human and Rat Hepatic Lipid Metabolism by the Grapefruit Flavonoid Naringenin: Role of PPAR alpha, PPAR gamma and LXR alpha
نویسندگان
چکیده
Disruption of lipid and carbohydrate homeostasis is an important factor in the development of prevalent metabolic diseases such as diabetes, obesity, and atherosclerosis. Therefore, small molecules that could reduce insulin dependence and regulate dyslipidemia could have a dramatic effect on public health. The grapefruit flavonoid naringenin has been shown to normalize lipids in diabetes and hypercholesterolemia, as well as inhibit the production of HCV. Here, we demonstrate that naringenin regulates the activity of nuclear receptors PPARa, PPARc, and LXRa. We show it activates the ligand-binding domain of both PPARa and PPARc, while inhibiting LXRa in GAL4-fusion reporters. Using TR-FRET, we show that naringenin is a partial agonist of LXRa, inhibiting its association with Trap220 co-activator in the presence of TO901317. In addition, naringenin induces the expression of PPARa co-activator, PGC1a. The flavonoid activates PPAR response element (PPRE) while suppressing LXRa response element (LXRE) in human hepatocytes, translating into the induction of PPAR-regulated fatty acid oxidation genes such as CYP4A11, ACOX, UCP1 and ApoAI, and inhibition of LXRa-regulated lipogenesis genes, such as FAS, ABCA1, ABCG1, and HMGR. This effect results in the induction of a fasted-like state in primary rat hepatocytes in which fatty acid oxidation increases, while cholesterol and bile acid production decreases. Our findings explain the myriad effects of naringenin and support its continued clinical development. Of note, this is the first description of a non-toxic, naturally occurring LXRa inhibitor. Citation: Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, et al. (2010) Transcriptional Regulation of Human and Rat Hepatic Lipid Metabolism by the Grapefruit Flavonoid Naringenin: Role of PPARa, PPARc and LXRa. PLoS ONE 5(8): e12399. doi:10.1371/journal.pone.0012399 Editor: Catherine A. Wolkow, National Institute on Aging, United States of America Received March 24, 2010; Accepted July 27, 2010; Published August 25, 2010 Copyright: 2010 Goldwasser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK080241), a European Research Council starting grant (TMIHCV 242699), and the Harvard Clinical Nutrition Research Center (P30-DK040561). Resources were provided by the BioMEMS Resource Center (P41 EB002503), Shriners Burns Hospital, and the Alexander Silberman Institute of Life Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected]
منابع مشابه
Transcriptional Regulation of Human and Rat Hepatic Lipid Metabolism by the Grapefruit Flavonoid Naringenin: Role of PPARα, PPARγ and LXRα
Disruption of lipid and carbohydrate homeostasis is an important factor in the development of prevalent metabolic diseases such as diabetes, obesity, and atherosclerosis. Therefore, small molecules that could reduce insulin dependence and regulate dyslipidemia could have a dramatic effect on public health. The grapefruit flavonoid naringenin has been shown to normalize lipids in diabetes and hy...
متن کاملA PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis.
Previous work has implicated PPAR gamma in the regulation of CD36 expression and macrophage uptake of oxidized LDL (oxLDL). We provide evidence here that in addition to lipid uptake, PPAR gamma regulates a pathway of cholesterol efflux. PPAR gamma induces ABCA1 expression and cholesterol removal from macrophages through a transcriptional cascade mediated by the nuclear receptor LXR alpha. Ligan...
متن کاملRegulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects.
The molecular mechanism by which hypolipidemic fibrates and antidiabetic thiazolidinediones exert their hypotriglyceridemic action are discussed. Increased activity of lipoprotein lipase (LPL), a key lipolytic enzyme, and decreased levels of apolipoprotein C-III (apo C-III) seem to explain the hypotriglyceridemic effects of compounds. Both fibrates and thiazolidinediones exert their action by a...
متن کاملActivation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue.
The control of lipid and glucose metabolism is closely linked. The nuclear receptors liver X receptor (LXR)alpha and LXR beta have been implicated in gene expression linked to lipid homeostasis; however, their role in glucose metabolism is not clear. We demonstrate here that the synthetic LXR agonist GW3965 improves glucose tolerance in a murine model of diet-induced obesity and insulin resista...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کامل